The StARS tuning parameter selection method from package 'huge'. Adapted to JGL models.

huge_stars_joint(
  inputlist,
  lambda = NULL,
  nlambda = 10,
  lambda.min.ratio = NULL,
  stars.subsample.ratio.vec = NULL,
  rep.num = 20,
  stars.thresh = 0.1,
  lam2init = NULL,
  lam1init = NULL,
  verbose = T,
  ...
)

Arguments

inputlist

a list of matrices with Gaussian distributed counts

lambda

a vector of candidate tuning parameter values. If NULL, the values will be generated according to the data.

nlambda

interger, number of candidate lambda values

lambda.min.ratio

numeric, the ratio of lambda.min / lambda.max, if NULL, it willbe set to 0.1

stars.subsample.ratio.vec

vector, the subsample ratios. If NULL, it will be decided by data

rep.num

integer, the number of subsampling

stars.thresh

the threshold value in StARS

lam2init

the initial value of lambda2 in JGL. This is set when try to optimize over lambda1

lam1init

the initial value of lambda1 in JGL. This is set when try to optimize over lambda2

verbose

logical, whether show processing messages.

Value

lambda: a vector of candidate lambda used. opt.lambda: the selected lambda value